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* ABSTRACT

* Electron Density Comparisons Between

* Radar Observations and 3-D

Ionospheric Model

CalculationsI
by

Michael W. Johnson, Master of Science

Utah State University, 1990

Major Professor: Dr. Vincent B. Wickwar
Department: Physics (Upper Atmospheric Option)

For the first time, a comparison of electron densities calculated from the Utah State

University First-Principals Ionospheric Model with simultaneous observations taken at

U Sondrestrom, Millstone, and Arecibo incoherent-scatter radars was undertaken to better

* understand the response of the ionosphere at these longitudinally similar yet latitudinally

separated locations. The comparison included over 50 days distributed over 3 1/2 years

I roughly symmetrical about the last solar-minimum in 1986. The overall trend of the

comparison was that to first-order tht, model reproduces electron densities responding to

diurnal, seasonal, geomagn~etic, and solar-cycle variations for all three radars. However,

I
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I to correctly prodluce an evening peak at Millstone, fall-spring equinox differences at

Sondrestrorn, tidal structure at Arecibo, and daytime NmF2 values at Arecibo.

....(1W-pges)- ,
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I CHAPTER II
INTRODUCTIONI

Over the last twenty years our knowledge of the ionosphere has grown tremendously.

This has occurred largely because of an increased observational capability which has led

to the evolution of ionospheric theories, empirical models, and finally, physical models.

One of the primary observational instruments is incoherent-scatter radar (ISR). This

radar is capable of measuring nearly all ionospheric parameters and can make

I observations throughout the ionospheric altitude range. Unfortunately, because of its cost,

only a few have been built, and those are strategically located so as to maximize their

scientific usefulness.

UProbably the most complete physical model to date is the Utah State University Time

Dependent Ionospheric Model (USU-TDIM), developed by Schunk and co-workers [Sojka,

1989]. As the name implies it is a time-stepping numerical model which rigorously

I calculates ionospheric parameters over the globe (see model description in Chapter II).

3 A natural step in the continuing development of the TDIM is to compare predicted values

with observations. In this way, the ability of the model to reproduce observed parametersI
can be tested, and better insight can be gained as to what aspects of the ionosphere we

understand well and what aspects we do not.

This study compares coordinated incoherent-scatter-radar observations of ionospheric

density with those predicted by the TDIM. The radars used are Arecibo, Millstone I lill,

I and Sondrestrom. These lie approximately on the same longitude and provide good

latitudinal coverage of the northern hemisphere. The latitudinal regimes of thle ionosphere

I



3 covered include high latitude (Sondrestrom), mid latitude (Millstone Hill), and low mid

latitude (Arecibo). The time interval covered includes 17 "World-Day" periods from 1984

I through 1988. World days are days on which several incoherent-scatter radars and other

instruments, in a coordinated effort, make observations over the same time interval.

These coordinated observations typically run 2-3 days and are often scheduled as close

to winter solstice, summer solstice, spring equinox, or fall equinox as possible. The data

3 for this study were obtained from the incoherent-scatter database NCAR.

The earth's ionosphere exhibits significant variations with respect to altitude, latitude,

longitude, universal time, solar cycle, season, and geomagnetic activity. This study

3 should particularly emphasize diurnal altitude variations, seasonal variations, and

latitudinal variations. Excellent reviews summarizing these differences and ionospheric

theory in general can be found in Schunk [1983], Nagy and Schunk [19871, and Rishbeth

U 1[19881.

3 Past efforts have focussed on comparisons between ionosonde observations and model

outputs of peak electron density of the F2 layer (NmF2) and the height of that peak

I density (HmF2) at mid and low latitudes or on high-latitude model-radar comparisons

3 using one or two radars and covering one or two days (see review of past studies in

Chapter II). These previous model-radar studies identified differences in the comparison,

however, it was not evident that these differences were systematic. In other words, did

3 they persist day after day or were they unique to the short period of the study? This

study identifies systematic differences, it is the next logical step to previous model-radar

comparisons of shorter duration. It exten(s those comparisons to three radars and to

I
I
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many days. Therefore, it tests the model calculations much more severely. With one

radar it is relatively easy to adjust input parameters to obtain agreement. As more radars

I are included, full density profiles used, and many days compared, the systematic

3 agreements or disagreements between model calculations and observations become more

meaningful.

The objective here is to emphasize major trends in the comparisons rather than trying

3 to match input parameters to specific days and comparing fine-scale structure for those

days. By major trends I mean primarily the similarities and differences between NmF2,

HmF2, and the time variation of those parameters. However, one of the benefits of using

3 incoherent-scatter radar data is the detail of electron density above and below HmF2;

*these features will also be examined.

I
I
I
I
I
I
I
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* CHAPTER II

I LITERATURE REVIEW

I 2.1 Incoherent-Scatter Radar

2.1.1 Ionospheric Effects on
Electromagnetic Radiation

Experiments carried out during the first half of this century showed that a radio signal

can be reflected by the ionosphere [Appelton and Barnett, 1926; Breit and Tuve, 19251.

This reflection will occur at an altitude where the radio frequency (f) is equal to the

plasma frequency (f,) [Ratcliffe, 1959]. The plasma frequency is given asI
f 1 Ne2 1/2(21

I . 2 .Lme] (2.1)

I
or f, = 8.97 X 106 N"0 (Mhz), where N = electron density (1/m 3), e = electron chargeI (C), r = electron mass (kg), and r permittivity of free space (f/rn). For typical

3 ionospheric values of N ranging from 1010 - 1012 (1/m 3), f" will range from 1 - 10 MHz.

Early theory predicted that for radio waves with f >> f, there would be no reflection;
this turns out to be true to the first and second order only. Very early on, J.J. Thomson

(as described in Evans 119691) demonstrated in the laboratory that individual electrons are

capable of weakly scattering electromagnetic waves. In the case of backscattering, the

cross section per electron is given byU
I
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S0,= 4cr, 2 (2.2)

where oe = electron backscatter cross section, and re = electron radius [Evans, 19751. It

was hypothesized by Gordon that by illuminating a finite volume of the ionosphere with

an electromagnetic wave, electrons, due to their random thermal motion, would scatter

signals whose phases would be varying in time [Gordon, 19581. Therefore, a receiver at

the ground would simply need to add signal powers so that

a = Not (2.3)

I
where T = total radar cross section. Using the classical electron radius of 2.8 X 10- (m)

and a representative electron density at the peak of the layer of 1012 (1/m) produces a

I radar cross section of only 10-16 (M2). Thus, Gordon predicted that if a very high-powered

* beam of radio waves were used with a frequency well above the peak plasma frequency

of the ionosphere (foF2), an extremely small but still measurable amount of power would

I be backscattered. He calculated that a large antenna would need to be constructed to

3 receive the low power signal scattered over a wide frequency range by the electrons.

The first experimental test of Gordon's predictions was performed by Bowles 119581.

It showed that Gordon's predictions were essentially correct except that the observed

3 spectral width was considerably narrower than expected. Theoretical work using several

different approaches has since shown that the influence of ions is to narrow the spectral

width Evans, 19691. It is this concentration of the return spectrum which renders theI
I
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earth's ionosphere open to investigation using apparatus of considerably lower sensitivity

than envisioned by Gordon. This type of scattering has been given the name incoherent

I (or Thomson) scattering even though it is not strictly incoherent because the ions provide

a degree of coherence.

2.1.2 Incoherent-Scatter Theory

The nature of radio-wave scattering depends on the relative size of the radar

wavelength to a characteristic length called the Debye length (D), which is given by

D = {4 7 e 12 (2.4)

where K = Boltzmann's constant and T, = electron temperature.

I For scale size greater than D, the plasma is neutral and the electrons and ions act

collectively. Thus, when the exploring wavelength (k) is less than the Debye length, the

received spectrum is representative of the unperturbed motion of the electrons-- that

I predicted by Gordon; when the wavelength is greater than the Debye length, the spectral

3 width is roughly that of using the mass of the ions but the velocity of the electrons

ltagfors, 19611. Evans explains incoherent-scatter observations as originating from

"density fluctuations brought about by longitudinal oscillations in the plasma-- the

3 principal components will be waves introduced by the presence of the ions (ion-acoustic

wavcs) and electron-induced waves at the plasma frequency and electron gyrofrcqucvcy"

[l vans, 1969, ). 499.1

I
I
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I 7
The theoretical power spectrum as a function of frequency, S(f), has been derived in

several different ways by a number of authors [Dougherty and Farley, 1960; Salpeter,

I 1960; Hagfors, 1961; and others]. I will not show the equation here. However, the

individual terms of the equation can be grouped into an electronic component and an

ionic component. In order to compare these two components to see which is dominant,

I the parameter (a2) is useful. Where

N 2 = [47tD (2.5)I
When ax > 10, the scattered energy is entirely due to the electronic component and

has a Gaussian spectrum with a width proportional to the thermal speed of the electrons.

For 0.5 _< ox < 2.0, the spectrum appears as the sum of the two components. When cX <

0.5, as (x --) 0 the amount of power in the electronic component decreases and appears as

I two lines displaced from the transmitted frequency by approximately the plasma

frequency [Evans, 19691. For data sets used in this work, aX2 ranges from 0 to a little

I less than 1. The Doppler width is given by

A 1! (2.6)
I

I where Af, = )opplcr width of the ion component, T, = ion temperature, and m, = ion

mass.

The total radir cross section, originally given by (2.3), is modlified for the ionic

I
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component so that when T, Ti,

o : (2.7)
(I +a 2)(2+a 2)

I
or when T, t Ti,I

0e (2.8)
(1 +a2)(1 +TjT/7+a 2)

I
FMoorcroft, 19631. Equation (2.8) is only valid for a small range of T'ITj. Fortunately,

for the range of TfT encountered in the ionosphere (2.8) does not introduce serious error

[ Evans, 19691.

There are three important aspects of the returned spectrum. First, the power (area

under the spectrum) is proportional to the electron density. Second, the Doppler shift of

the spectrum is proportional to the line-of-sight ion velocity. Third, the detailed shape of

3 the spectrum provides information on electron and ion temperatures. At higher altitudes

where H+ is present, it provides information on the ion composition. At lower altitudes

U it provides information on ion-neutral collisions. There are five parameters that describe

the spectral shape. A brief discussion of each follows.

a. The parameter (x? -

I As discussed previously, a' charactenizes the degree to which the ions

affect the returned spectra (see Figure 1).

I
I
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b. The ratio T,/T, (or Tr) -

This ratio (primarily Ti) changes the width of the spectrum; see (2.6) and

I Figure 2. In addition, T, affects the peak-to-valley ratio, see Figure 3.

c. Ionic composition -

For density calculations (those of concern in this study), the ion

composition has almost no effect. However, temperature calculations are

very dependent on ion composition effects. The Doppler width of the

returned spectrum is proportional to the square root of the ionic mass, as

can be seen from (2.6). The ionic mass must be guessed at or in some

independent way determined. Fortunately, O is the major ionic

component in most F-region cases. See Figure 4 for composition effects

on the spectrum.

I d. Magnetic fields -

If the wave propagation direction is normal to the lines of force and the

exploring wavelength is on the order of the ion gyroradius, characteristic

I fluctuations will be imparted to the spectrum by the gyromotion of the

ions. This effect has only been seen at the Jicamarca ISR in Peru (near

the magnetic equator) and serves in general to increase the total echo

power when T, > 1.

1 e. Collisions -

The derivation of the power spectrum equation was made assuming a

I
U
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Fig. 2. T, variation of the power spectra. The curves show eight values of T, (200, 400,
6(X), 800, 1200, 1600, 2400, and 3200'K) for T, = 1.0, a2 << 1, 0 composition, and a
radar frequency of 1290 MHz. From Wickwar [19741.I
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Fig. 4. Composition variation of the power spectra (q), where q = N(O")/N(e). The curve
shows variation in composition from entirely mass 31 ions to entirely 0' ions (from q =
0.0 to q = 1.0 in steps of 0.2) for T1 = 5(XW°K, T = 2.0, and oX' << 1. These curves are
for a radar frequency of 1290 MHz. From Wickwar 119741.I
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collisionless plasma. It is therefore assumed that neutral collisions with

ions are negligible when X. >> 47tD. This is generally true when h >

i 120 km and for wavelengths between 0.2 and 10 meters Iivans, 19691.

The main effect of collisions on the power spectrum is to make its shape

more Gaussian; the total area under the curve is not greatly affected.

Therefore, the derived temperature will change appreciably, but the

5 deduced density is practically unaffected.

2.1.3 Data Processing and Analysis
of Incoherent-Scatter Data

There are several methods of calculating electron-density profiles with incoherent-

5 scatter signals. One method is to examine the Faraday rotation of the backscattered wave

IEvans, 19691. Another is to measure the frequency offset of the plasma line IYngvesson

i and Perkins, 19681. However, the method used at Sondrestrom, Millstone Hill, and

Arecibo is the one I alluded to earlier and involves the observation of the total returned

power applicable to a particular height range. It takes into account temperature-dependent

U changes in the backscattering cross section, as discussed earlier.

In the previous section, the returned power spectrum was discussed as being a

function of frequency S(f). In actual practice, the signal is sampled in such a way as to

produce an aUto orrelation function (ACF), which is the Fourier transfoml of the power

i spectrum. So as to demonstrate an analysis technique, I will present an iterative method

representative of Sondrestrom density calculations. This method was taken from Wickwar

119741 and V. B. Wickwar (personal communication. 1990). The actual method used at

i

I
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a particular radar is hardware- and software-specific.

First, the radar equation is given byI
P(r): =KN(r) O (2.9)

r(2

I where r = range, P(r) = returned power, and K = proportionality constant which is radar

dependent on the radar and its operating mode. Second, c, as mentioned previously, is

a function of Tr and of D. Therefore, a fictitious "raw density" (N') is derived from (2.9)

by setting cX2 = 0 and Tr = 1. This equation is

I NI(r)-= P(r)r 2 (2.10)
| Ka

I By using (2.8) and solving (2.9) for density in terms of (2.10) we get

U N(r): (1 +a2 +T)(1 2 )N(r) (2.11)

I 2

Finally, to calculate N(r), X2 and T, must be known; the former is a function of both N

and T. T, and T, (and thus Tr) can be derived directly from the ACF. Since ACF

information is available only at widely spaced intervals, a spline fit is done to interpolate

between values. The real & and N(r) can then be determined by the following iterative

procedure:

a. From (2.4) and (2.5), ox' is given by

I
I
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(aj)2 = T, (2.12)I

3 where the subscript (j) denotes an iterative quantity.

b. From (2.11), Ni becomes

(1 +aj2 + T)(1 +a2) NI (2.13)

I =2

I
c. Solve for xj2; next solve for Nj; use the new Nj to solve for a new X2 and so on.

Repeat this iteration until N. varies by less than 1% from the previous value.

As mentioned before, the actual method used at a particular radar is software-

dependent. A gist of the methods used at Sondrestrom, Millstone Hill, and Arecibo

I follows.

At Sondrestrom, the parameters are derived as described above. Normally a 48 km

pulse length is used for all altitudes. However, sometimes the pulse length is varied with

I altitude. When it is, a 9 km pulse length is used for heights below 150 km and a 48 km

pulse length is used for heights above 250 km; between 150 - 250 km, density

calculations are made using 9 and 48 km pulse lengths which are then weighted by linear

U interpolation (V. 13. Wickwar, personal communication, 1990).

At Millstone [ill, a least-squares fit of theoretical ACFs to the observed correlation

u functions is made to derive all parameters. llectron densities are then calculated by

inserting a calibration Constant into the radar eq uation (2.9). The constant used is

I
I
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determined by comparing radar-derived electron densities from the F-region peak to f 0F2

ionosonde observations (converted to electron density). An effort is made to use high-

I elevation angle radar measurements and local ionosonde measurements. However, when

overhead radar data do not exist, oblique radar data are used. The local ionogram

sequence is shifted in local time to simulate density conditions at the oblique point of

measurement (R. Musgrove, NCAR data header record, Feb. 4, 1985). For most radar

experiments, ionospheric parameters are derived using 6, 30, 48, 96, 192, and 300 km

pulse lengths. For this study, only the 96 km pulse length is used.

At Arecibo, the least squares fit of theoretical ACFs to the observed correlation

functions is made to derive all parameters (V. B. Wickwar, personal communication,

1990). The calibration constant is determined by comparing the radar-derived electron

densities from the peak of the F-layer to the peak electron density derived from ionosonde

I measurements. Prior to October 1985, the ACFs were determined using a 45 km long

I pulse with a new ACF determined every 22.5 km in range. Since then, a new 7-pulse

scheme using 46.2 km long pulses has been used ISulzer, 19861.I
2.1.4 Signal Processing

I As with any radar system, signal processing will alter the received waveforn. With

incoherent-scatter radars, two factors must be considered: a very low signal-to-noise

ratio: and instrumental effects (transmitter, receiver, and digital processor).

Low signal-to-noise ratio is addressed by using relatively long integration times. This

3 effectively limits the precision to which measurements can be made because of

geophysical variations.

I
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Instrumental effects distort the returned spectrum. These distortions are taken into

account in the data reduction. The effects, as they apply to both frequency and time

I domains are summarized in Figure 5 IBaron et al., 19701.

I 2.1.5 Radar Descriptions

A short description of the three radars used in this study follows (a summary of radar

descriptions is given in Table 1).

Sondrestrom is located at Sondre Stromfjord, Greenland (67.0°N,51.0"W), which is

approximately 74 ° invariant latitude with a dip angle of 80'. The facility is operated by

Stanford Research Institute (SRI) International. The radar is a pulsed system that

transmits at 1290 Mhz with a 60-320 pts pulse length at a peak power of 4 MW. The

Iantenna is a 32 m fully steerable Cassegrain dish. For further details see Kelly 119831 and

Wickwar et al. 119841. The receiver system is described in Kofman and Wickwar 119801.

Millstone Hill is located in Westford, Massachusetts (42.6°N, 71.5°W), which is

I approximately 53" invariant latitude with a dip angle of 72". The facility is par of the

Haystack Observatory operated by the Massachusetts Institute of Technology. The radar

has two antennas, one fixed 67 m, and one fully steerable 46 m parabolic type. It also

I has two transmitters, they are pulsed systems with peak power of 2.5 MW each at a

frequency of 440 MHz. They can be operated separately to each antenna or combined

for 5 MW peak power. For further operational specifications see Evans et al. 119791.

The Arecibo radar is located near Arecibo, Puerto Rico (18.3"N, 66.8"W), which is

approximately 320 invarianLit itude with a dip angle of 49*. The facility is operated by

I
I
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Fig. 5. Relationship of the fluctuation spectrum in the ionosphere to thle measured
spectrum. The signal is affected by the finite length of thle transmitted pulse. thle
frequency response of the receiver, and the way in which the signal is sampled. The left-I hand side shows how these factors enter in the frequency domain, thle nght-hand side
shows; 10w they eniter in thle time domain. From Baron el ali. 11 9701.
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I'ABI LF I. Radar I)cscriptions

SONI)RISTROM

>location: 67" N, 51" W (74" invariant latitude)

I > dip angle: X0

> specifications: f 1290 Mllz

Peak Power 4 MW

Pulse width 60 - 320 ps

I MIIlJ.STFM I ONl lL.

>location: 43" N, 72" W (53" invariant latitude)

>dip angle: 72"

>specifications: f = 440 Mllz

Peak power = 2.5 MW (X 2)

Pulse width = 40 - 2(XX) ts

ARFC')

>location: I8 N, 67" W (32" invariant latitude)

I >dip angle: 49-

>specifications: = 430 Mllz

Peak power = 2 - 2.5 MW

Pulse width 32() ps (seven pulse technique used after
()clobcr 1985)

I
I
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Cornell University. The radar is a pulsed system that transmits at 430 MHz with a peak

power of 2-2.5 MW. A pulse width of 320gts is used, however the pulse technique was

I changed during the period of the data base used in this study. Before October 1985, a

single long-pulse technique like that at Sondrestrom and Millstone Hill was used; after

that time a 7-pulse technique using 7 long pulses was implemented ISulzer, 19861. The

antenna is a fixed 3(X)-i diameter spherical reflector constructed in a limestone sink hole.

The line feed, positioned about 150 meters above the dish, can be moved so as to transmit

and receive signals at angles up to 20* off zenith.

2.2 USU-TDIM Model

2.2.1 General Description

The Utah State University, Time Dependent Ionospheric Model (TDIM) has been

I developed over a fifteen-year period and has undergone several improvements [Schunk,

19881. At the present time, the TDIM is a comprehensive, completely global, ionospheric

first-pinciples model. It produces time-dependent three-dimensional distributions for ion

I and electron temperatures and densities. The model takes account of field-aligned

3 diffusion, cross-field electrodynamic drifts, thermospheric winds, polar wind escape,

energy-dependent chemical reactions, neutral composition changes, ion production due to

solar EUV radiation and auroral precipitation, ion thermal conduction, ion diffusion-

thermal heat flow, and local heating and cooling processes. It also allows for the offset

between geomagnetic and geographic poles (UT effects).

!
I
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I 2.2.2 Theoretical Development

In order to quantify the physical processes of the ionosphere, the TDIM solves a

I system of equations generally known as the transport equations. The three lowest order

U transport equations are the continuity, momentum, and energy equations, respectively.

These three equations expressed in a Lagrangian system and in CGS units areI
an ' (2.14)

IDs +2 ,(V.u.)+ V.q. + ,:Vu= -- +Q- (2.16)
28t

I

where D/Dt = o/i)t + u, V is the convective derivative of species s, p, 2.1kT, is the

I partial pressure, n, is the number density, m, is the mass, e, is the charge, T, is the

N temperature, u, is the drift velcity, q, is the heat flow vector, 'r, is the stress tensor, P',

is the ionization prodluction rate, IU, is the ionization loss frequency, Q. is the heating

~rate, I, is the coo ling rate, G is the acceleration due to gravity, E is the electric field, B

. is the magntic field, o/i)t is the local time derivative, V is the dell operator, c is the

Sspeed of light, and k is BoltzmVun's constant. The double-dot operator in (2.16)

cortrsponds to the scdlr preityct of the two tensors. The ,atLi ties M,let and ,/P6
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represent the rate of momentum and energy exchange, respectively, between species s and

the other species in the plasma jSchunk, 1988).

I The momentum exchange term (8M/j8t) and energy exchange (6E,/t) of (2.15) and

3 (2.16), are both functions of collision frequency and velocity distribution between neutral-

ion-electron plasma species. The model assumes that collisions are random and velocity

I distribution can be represented by a displaced Maxwellian distribution such that

I M 8 npmv(u, - u) (2.17)
i 8t

I

__, nmY, I3k(TT)+__ m(-u)](2.18)

where the subscripts s and t denote the collision species, and v,, represents the intra-

I species (s-t) collisional frequency ISchunk, 1977, 19831. Collision frequencies between

3 charged species are both temperature and density dependent; and ion-neutral collisions are

linearly proportional to the neutral density ISchunk, 19831. Finally, it is noteworthy that

I ~v, ' V,,, instead

I nsmv= n nmv, (2.19)

I
I
I
I
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Before reviewing the general solution to the transport equations, I want to point out

some of the physical processes which occur at different altitude regions of the ionosphere.

I Several of the assumptions made in the solution of the transport equations are based on

distinguishing the dominant process occurring at different altitudes. There are three

general ionospheric layers. First, there is a lower-ionospheric region (roughly 100-250

I km) where photochemical processes dominate. Second, there is an upper-ionospheic

region, where diffusion processes dominate (roughly 350-800 km). Third, there is a

transition region where both processes have the same order of importance (250-350 km).

Time constant arguments justifying this classification can be found in Schunk [19831.

2.2.2.1 Plasma diffusion. For plasma drifts perpendicular to the magnetic field, the

momentum equation (2.15), is resolved into its perpendicular-drift components. The

assumptions made include neglecting shear stress (,t), neglecting waves and assuming

sub-sonic flow (Du/Dt), and neglecting horizontal momentum transfer (8MJ6t). The

resulting perpendicular drift equation becomes

_ c(ExB) + eC_(GxB)- C (VPxB) (2.20)
B B2  eB2  neB2

I
where the subscript _ denotes a component perpendicular to the magnetic field. The three

I terms listed on the right hand side of (2.20) are the electromagnetic, gravitational, and

diamagnetic-plasma drifts, respectively. An additional assumption is made that the

electromagnetic drift is the most dominant. Therefore, gravitational and diamagnetic

drifts are neglected ISchunk, 19881. The perpendicular plasma drifts arc then

I
I
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3 approximated by the electromagnetic drift only so that

U, U c(E x B) (2.21)

E  B 2

where the subscript E denotes electromagnetic drift.

For drifts parallel to the magnetic field, the mxel assumes ambipolar flow - (where

I ions and electrons move together, up or down field lines, like beads on a string) ISchunk,

I 19731. The continuity equation (2.14) becomes

3 Dtn + V, (nu,) Pi - Lin (2.22)

Dt

I
where the subscript , refers to a direction parallel to B. The diffusion equation for major

ions (and for the diffusion of electrons) is derived from (2.15) and is given by

I
nu,, u-ol~v n'+ n__T m1G, +IV,(T+T (T (2.23)

I
andI

SkT (2.24)

I

I
I
I
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3 Key assumptions made include assuming ambipolar flow (ui - u,); assuming the

polarization electrostatic field (E.) is solely determined by the electrons (because of

I relative mobility between ions and electrons); neglecting waves and assuming sub-sonic

U flow (Du/Dt); and assuming the ion-neutral collision frequency (vi.) is the dominant

collision term in the momentum transfer equation (MJt).

U The ambipolar-diffusion equation shown above (2.23) is solved for the major ions

3 (O', NO', 02'). In addition, the diffusion equation for the minor ions (He', N2', N*) is

solved. For a derivation of the latter equation see Schunk [19881.

I should stress that all of these equations are coupled. That is, for the six species of

3 major and minor ions, an equation for each one is solved self-consistently as part of a

system of equations.

2.2.2.2 Photochemistry. Ion and electron production and loss mechanisms include

3 ionospheric photochemical reactions and production from auroral precipitation. Auroral

3 precipitation is an input parameter to the model and is covered in the next section. For

photochemical reactions, the TDIM reproduces the physical production and loss

I mechanisms believed to be occurring in the ionosphere. The most important of these

3 include

SN 2 + hv -N 2*+ e

N' + N + e
02 + hv -02'+ e (2.25)

I O + hv -0 +e
N + hv N' + eI

I
I
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I
the photoionization production rate is given byi

P,(E,z) = E En(z)fdXi,.X)o)(,X)p,,(XF)cxp[-T(Xz)I (2.26)
L 0

and

T (X,z) ('o a)(;)n,Hch(R,,X) (2.27)

I
kT,, (2.28)
m,,g

R - z) (2.29)

H

I
I where P', is the photoelectron prod~uction rate; E = EX - El', E,, is the energy

corresponding to wavelength X, E, is the ionization energy of a given excited ion state

I (1); R is the planetary radius; X is the solar zenith angle; ch(Rn,X) is the Chapman grazing

incidence function; and p( . 1,E) are the branching ratios of the various excited ion states

IS chunk, 19831. Key assumptions include a solar radiation spectrum suggested by Torr

I ct at. 119791 so that parameters dependent on wavelength (kv) are varied and a constant

neutral scale height (I01,).

Chemical reactions included in the T)1NI are shown in Table 2. The reaction rates

I
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I TABLE 2. Ion Chemistry and Reaction Rates, adapted from Schunk [19801. 28............................................................................................

Reaction Rate Coefficients, cm 3 s-
1

--------------------------------------------------------------------------------------------

0 ' + N , N- 0O ' + 0 k 1

0 + 02- - 0 2' + 0 k2

O + NO- NO+ +O k3

02 + N, NO+ + NO 5 X 10-16

3 0,++ NO - NO' +02 4.4x 10 0

0, + + N -- NO'+ 0 1.2 x 1010

O2+ + e -0 0 + 0 1.6 x 10-7(300/e)0 55

N, + 0 - NO+ + N 1.4 x 10 1(300/T)";T<1500*K3 5.2 x 10-"(T/300), 2;T>1500"K

N2
+ + 0 0+ O + N 2  I x 10-"(300/T)0 23;T<1500"K3 3.6 x 10-12(T/300)0 41;T>1500°K

N,+ + 02 -0 02 + N2  5 x 101 1(300/T)

N 2+ + NO -NO + + N2  3.3 x 10 0

N2+ + e N + N 1.8 X 10-7(300/T) 0 .39

3 NO + + e - N + O 4.2 x 10 7 (300/T,) 0 8 5

He+ + N2 - N + N + He 1 x 10.9

N+0 2 - NO + +O 2 x 10 °

N+ +Ol - 0 2
+ + N 4 x IWO

N t +N O - N O ' + N 2x 10-"

I
I
I
I
I
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for these reactions are temperature dependent and are given in Schunk 119831. At mid

latitudes, seasonal O+('D) to N2' composition changes are incorporated as cited in Schunk

I and references therein [1988].

2.2.2.3 Thermal structure. Ion- and electron-temperatures gradients contribute to the

pressure force which drives ambipolar flow (2.23). At lower altitudes, these temperatures

effect chemical reaction rates. The TDIM calculates temperature profiles by solving the

3 ion and electron energy equations.

The ion energy equation becomes

8E (2.30)I V'q, - + Q. - L,
8t

Key assumptions in this derivation include neglecting the convection term (DIDt)(3/2)p,,

I neglecting the advecting term 1(5/2)p i(V - u,)], and neglecting the viscous-heating term

(1, • Vu). The ion heat flow of (2.30) is given by Conrad and Schunk J 19791 as

3 q, : -K'V, T, - K V, T + R(u, - u.), (2.31)

U where K'ni and Kin are derived thermal conductivities and Rin is the diffusive-thermal

3 coefficient. The main assumptions made in deriving (2.31) include assuming a collision-

dominated partially-ionized plasma; assuming the ion heat flow is only relevant to high

F-region altitudes and therefore using O and 0 as the dominant ion and neutral species,

3 respectively; and assuming that the ion temperature (T,) can be represented by the major

ion species only.

U
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For the electrons, a temperature profile is generated using the electron continuity and

electron energy equations. The electron energy equation becomesI
3 .JT 3 6E (.2- nk , n,kT.(V-u,)--nku, VT -W-q +-+Q,-L• (2.32)

I and

q,, J,,, - V V,, T (2.33)

I
where P, is a thermoelectric coefficient and K' is the electron thermal conductivity

[Schunk, 19881. Key assumptions include neglecting the viscous heating term (re : VUe)

and neglecting production/loss mechanisms in the electron continuity equation (2.14).

Cooling rates for both elastic and inelastic collisions are calculated as shown in

Schunk 11988]. Heating rate calculations are shown in Schunk [19831.

I 2.2.2.4 Model input parameters. The TDIM is a regional model, in other words, it

reproduces physical processes at a specific region-- the ionosphere. However, this region

is strongly coupled to the atmosphere below, the magnetosphere above, and to the neutral

I constituents within the ionosphere itself (thermosphere). Coupling mechanisms include

electric fields, particle precipitation, field-aligned currents, heat flows, and frictional

interactions. These coupled contributions must be input to the model and are either

U estimated as being negligible, or input as smoothed statistical averages. The most

important input parameters are the adopted convection electric fields, auroral precipitation,

thermospheric wind, composition, and electron heat flux, see Table 3.

I
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Adopted input parameters include thermospheric densities and temperatures from

Mass Spectrometer and Incoherent Scatter (MSIS model) [Hedin, 19871; an analytical

I expression for thermospheric wind pattern modified from Murphy et al. [1976]; an

empirical plasma convection pattern, see for example Sojka et al. [1986]; and an empirical

auroral oval, see for example Feldstein and Starkov [19671.

2.3 Previous Studies

A number of TDIM-observational studies have been conducted in the past ten years.

Most of these have focussed on two areas: (a) limiting the time period of the study so

I that model input parameters could be closely matched to observed values and then testing

model sensitivities or; (b) making comparisons using large observational data sets (such

as ionosonde derived f0F2 and HmF2) in order to study trends. A review of those

I comparisons most pertinent to this study follow.

Murdin et al. 19841 used incoherent-scatter radar data from Chatanika for both a

geomagnetically-active and -quiet day in a compai>s 1 with derived TDIM electron

I densities. The study emphasized diurnal transport effects and highlighted the failure of

the model to reproduce fine structure on the geomagnetically active day.

Sojka et al. 119831 compared plasma convection velocities and electron densities

derived from Millstone Hill incoherent-scatter data with TDIM predicted values. A day

near equinox with moderate magnetic activity was chosen for the comparison. Most of

the observed features were reproduced by the model. Where differences did occur they

were attributed to the auroral oval and convection electric field inputs to the model.I
U
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Rasmussen et al. 119861 compared TDIM electron-density predictions on two summer

days with simultaneous radar observations from Chatanika and Millstone Hill. A great

I deal of effort was spent in adjusting empirical model inputs to the radar data and NOAA-6

satellite data whenever possible. The sensitivities of the four main model inputs, were

closely scrutinized. Those inputs were the convection electric field, thermospheric winds,

U auroral-electron energy flux, and electron temperature distribution. Very good model-

3 observation agreement was achieved, especially at Millstone Hill (50' invariant).

However, some discrepancies were found at Chatanika (65" invariant) and the most likely

cause was again attributed to model input limitations.

Wilkinson et al. [19871 compared ionosonde NmF2 and hmf2 for several sites with

both the TDIM and the International Reference Ionosphere (IRI) empirical model. The

period of study was near equinox using both geomagnetically-active and -quiet day.

I Model inputs for both the TDIM and IRI were initiated to predict average behavior.

There was good agreement in most cases; however, there were phase differences and

peak-density differences in the TDIM at low-latitude stations. These were attributed to

I the input low-latitude electric-field model, neutral-wind inputs, and the inability of the

3 TDIM to reproduce gravity wave structure.

Sojka et al. 119881 used a localized yet very extensive observational data set for

U TDIM comparisons of complete diurnal, seasonal, and solar cycle trends for quiet

geomagnetic conditions. 1-e used ionosonde fF2 data from the Argentine Islands' which

had been processed by Wrenn et al. 119871 to represent quiet geomagnetic activity for

yearly periods from solar-minimum to solar-maxinum conditions. The Argentine Islands

I
I
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ionosonde is a mid-latitude location (-58" invariant). The TDIM by this time included

rigorously calculated ion and electron tempc-aw~res, thus climinating the need to use them

I as input parameters. However, this addition to the model created the need to input a solar

flux spectrum. Diurnal trends were modeled successfully over all solar-cycle and seasonal

conditions. Discrepancies that they found were attributed to the input solar spectrum flux,

I and neutral wind induced drifts. It was also noted that for this study, varying the MSIS

atmosphere had little effect on foF2.

This present study is uniquely different from those just discussed. It combines the

advantages of using highly detailed radar data (instead of ionosonde data which is limited

to f0F2 and less reliable HmF2) and extending the comparison to many days, over several

*seasons so that systematic differences can be examined.

I
I
I
I
I
I
I
I
I
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* CHAPTER III

* DATA PROCESSING

I 3.1 Temporal and Spatial Resolution

I In order to make a meaningful comparison between radar- and model-derived

electron-densities, consideration must be given to the temporal and spatial resolution of

both. Generally speaking, the number of radar-density profiles available in a given time

interval far exceeds the temporal resolution of the model. In addition, both model and

radar need to give density profiles directly above each radar. Obviously, for temporal and

spatial reasons, some averaging of the radar data must be performed before a comparison

with the model can be made.I
3.1.1 Radar Resolution

I By averaging several radar observations together, a temporal and spatial mean-density

profile was created. In the time domain, this should serve to smooth out some of the

small-scale features in the radar observations that are unwanted in this comparison.

I Spatially, this averaged profile should represent the area directly above the radar. Factors

leading to this conclusion follow. First, only high-elevation-angle data was selected.

Second, in most cases the spatially averaged pattern was homogeneously spread around

I the radar. "Third, large horizontal density gradients between averaged observations are not

generally expected, this is especially tre at Millstone and Arecibo. Vertical radar

resolution has already been discussed in Chapter 2.

I
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I 3.1.2 Model Resolution

Model data generated for Sondrestrom and Millstone Hill was stored in the following

I manner. During every 24-hour period, 12 Universal Time (UT) bins were created. Each

UT bin was then subdivided into 24 Magnetic Local Time (MLT) bins. This creates a

temporal resolution for these runs of one hour of MLT, with a new MLT bin being

U created every other UT-hour. Twenty latitude bins were generated between 50'-90 °

(magnetic), this gives a 2' magnetic latitude resolution. For a given radar, if the

horizontal area of the bin covered the geographic location of that radar, it was selected.

In the vertical, there were 20 altitude bins ranging from 100 to 800 km. For the altitude

range of this study (100-500 km), vertical-bin spacing ranged from 4 km (at 100 km

altitude) to 22 km (at 500 km altitude).

At Arecibo, density bins were centered at its geographic location and stepped through

24 MLT hours. In other words, it was assumed that the ionosphere at this latitude co-

3 rotates with the radar. Actually, the Millstone model data could also have been

acceptably run in this manner. Vertical binning at Arecibo was done in the same way as

I at Millstone and Sondrestrom.

I 3.2 Averaging Radar Data

U All of the data received was on 9 track, 1600 bpi tapes which were archived in

3 standard NCAR format. Data processing included: (a) reading the tapes onto the USU

VAX8650 mainframe: (b) running data selection and averaging routines for each radar

experiment while storing this processed data on a DECstation31(X); (c) accessing these

I
I
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files from a VAXI 170 with a plotting routine; and (d) photographing the plots through

an AED system to produce 3x5" color prints of the processed data (see

I Acknowledgements).

i 3.2.1 Processing Common
to all Three Radars

Those parts of the data selection and averaging routines common to all three radars

were as follows. First, a selected experimental data type was chosen. Data types vary

from radar to radar and sometimes even from experiment to experiment; they represent

a specific data-acquisition and -analysis algorithm used to produce the archived data.

Second, an average elevation and azimuth angle was calculated for each record and key

parameters were selected, such as date, time, altitudes, and densities. Third, records

below a set elevation angle were discarded (this step was not applicable to Arecibo data).

Fourth, a routine eliminated all those densities not lying between 100-500 km and then

linearly interpolated the remaining values to create a profile with 10 km spacing.

Actually, because the data is stored in LOG format and it tends to be distributed

I exponentially in altitude, the interpolation is a linear interpolation of LOG density values.

3 Finally, these individual profiles are grouped and averaged-- because this step varies from

radar to radar, it will be discussed separately in the next three sections.I
3.2.2 Sondrestrorn Processing

I The data used at Sondrestrom came from fixed position records with the exception

of June 1987 which was taken from elevation scan records. Fixed-position scans were

normally eleven-position patterns like that shown in Figure 6. Similar nine-position

I
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Fig. 6. Typical azimuthal pattern used for a fixed position Sondrestrom scan. Points
represent the location of data at 100 km altitude. Dots (-) represent datum not selected
for the average because of low elevation angles, whereas x's (x) represent datum used for
the average. The scale is 2" = I(X) kmi.I
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j patterns, and patterns with an added parallel-to-B observation, were also used. Elevation

scans used in the June 1987 experiment consisted of records whose densities were derived

I as the antenna was sweeping in elevation. Both fixed-position and elevation-scan patterns

are approximately aligned on the local magnetic invariant meridian.

The averaging routine used for the fixed-position records grouped profiles by

azimuthal pattern and then performed a simple average. There were at least five, and as

many as seven, profiles per grouping. The elevation cutoff angle used for all

Sondrestrom data was 49 °. The averaging routine used for the one elevation-scan for June

1987 was processed in the same way as the Millstone data which is described below.

I
3.2.3 Millstone Processing

UAt Millstone, different azimuthal patterns were used for nearly every experiment.

Rather than writing a different routine for each one, I grouped the data by time alone.

I found that a re-occurring pattern could be selected by simply sorting by time gaps

I between groups. Because of the variety of experiments, the number of averaged profiles

3 ranged frm,r, I (no averaging) to 11. Most of the elevation-cutoff angles were at 58, the

lowest used was 40 ° for the Jun 1984 experiment.I
3.2.4 Arecibo Processing

I For Arecibo records, the antenna pattern was fairly constant. Elevation angles were

fixed at 75, and the azimuthal pattern generally started with the first record at 180, and

successive records located every 20-30" in clockwise increments until 180" azimuth was

I
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The averaging routine used for these records grouped them so as to encompass a full

clockwise or counterclockwise rotation, usually containing between 8 and 14 separate

I profiles. If a group contained significantly more profiles than this (I picked 21 as

significant), it meant that the azimuths for successive records were not changing and I

would delete this group to prevent biasing the data (note this was relatively rare). In a

U small subset of cases, a group would not cover a full 360' (usually only 270"-350"); I

did not think this would significantly bias the average and included these groups.

3.3 Running the TDIM Model

3.3.1 Description of the Model Runs

Model data used for both Millstone and Sondrestrom came from existing data sets.

These data sets were made to. reproduce seasonal ionospheric parameters for low,

I medium, and high solar cycle and geomagnetic conditions, (By) positive and negative

3 convection patterns; and for latitudes above 50" invariant. Therefore, runs were made

without using the coupled low-latitude model. In addition, rather than including a

I coupled electron energy equation (with non-quantifiable heat inputs); daytime and

3 nighttime T, profiles as described by Roble 119751 were used while the auroral oval T

profile as described by Roble and Rees [19771 was used. Finally, neutral composition

inputs from MSIS were not varied with geomagnetic activity (Ap or Kp) but were chosen

3 based on a constant (Ap) of 20.

This same TDIM-subset was used for Arecibo. Arecibo runs were only made for the

solar and geomagnetic range applicable to a given experiment, and were only solved forI
I
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density. In addition, neutral-composition inputs from MSIS (for Arecibo runs) did vary

with geomagnetic activity (Ap or Kp).I
3.3.2 Seasonal, Solar Cycle,
and Geomagnetic Definitions

The following definitions were used for model input parameters:

a. Seasonal

3 Winter = 357 (Julian day)

Equinox =82

Summer 173

b. Solar Cycle

Maximum 210 (F1O."/ Flux)

Medium = 130

I Minimum =70

c. Geomagnetic

High = 6 (Kp index)

I Medium = 3.5

3 Low =1

Notice that the spring equinox seasonal input was used in the comparison for both spring

U and fall equinox observational conditions. In addition, two asymmetrical polar convection

3 patterns were used, they were classified as By+ or By-.

Input parameters for each "World Day" were selected with observed geomagnetic

(Kp) and solar (Sa) values as guides. In many cases, when the input parameter

I
I
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classification was not clear, several model runs were made. Table 4 shows daily

geomagnetic and solar data valid for the period of this study. Kp values are derived by

I averaging daily Ap and then converting to Kp with a conversion taken from Knecht and

Shuman 119851. Sa values are a simple arithmetic mean of daily Sa. The Sa parameter

is defined as the F10.7 solar flux normalized to one astronomical unit-- F10.7 and Sa flux

are equivalent parameters for purposes of this study. Kp and Sa data for this table was

taken from monthly published geophysical data, see for example Coffey and references

therein 119841.

I
I
I
I
I
I
I
I
I
I
I
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TABLE 4. Observed Solar and Geomagnetic Data

Date Kp Kp Sa Sa

Jan. 1984
17 2 95.2
18 2- 95.0
19 3+ 93.4

2+ 94.5
Mar. 1984

7 4 4 105.0 105.0
Jun. 1984

26 2 100.1
27 2+ 101.5
28 4 - 99.5 100.4

Jul. 1984
23 2 87.3
24 3- 86.8
25 2 85.9

I Sep. 1984 2+ 86.7

19 5- 74.6
20 4- 74.1
21 2+ 75.1

4- 74.6

Jan. 1985
15 2+ 72.4
16 2 74.7
17 2+ 75.8
18 2- 74.1I2 74.3

Mar. 1985
19 2+ 74.2
20 1+ 74.2
21 1+ 76.1
22 1 75.92- 75.1

Jun. 1985

25 3- 71.0
26 4- 70.0I 3 70.5

Jan. 1986
14 1 76.4
15 1+ 75.1
16 1- 75.5
17 2- 74.4

1 75.4

I
I
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TABLE 4 Continued.

I- ----------------------------- .- .- ---------------------- .. .

Date Kp Kp Sa Sa

Mar. 1986
5 2 90.5
6 4+ 89.73+ 90.1

Sep. 1986

23 5- 68.7
24 4- 68.8
25 4 69.4
26 4 68.5

4 68.9
I Jan. 1987

27 2 69.9
28 3- 70.8
29 2+ 70.6
30 1 69.8

2 70.3
Mar-Apr. 1987

31 1 71.9
1 2+ 72.5

2 72.2I Jun. 19871 2 77.8
2 2 77.9
3 1 76.4I3
4 2- 77.3
5 2 76.1

S2 77.1

Jan. 1988

12 4- 108.1
13 2 113.7
14 5 112.4
15 6- 121.8
16 1+ 116.4I4 114.5

Mar. 1988

16 3 114.1
17 2+ 117.4
18 2 116.1
19 1 116.1
20 2- 116.3

2 116.0

Jun. 1988
13 2- 115.0
14 3+ 111.7

3- 113.4

I
I
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I CHAPTER IV

I ANALYSIS OF DATA

I The color plates used for this analysis are only a subset of the 17 "World Day" cases

covered in this study. They were chosen to represent key trends found throughout the

data set. My primary emphasis in the analysis of plates 1 - 10 is to compare major

I ionospheric density features found for a cross-section of these "World Day" experiments.

The remaining plates highlight the vanous trends found in this study or address a specific

problem. A summary of the most significant trends can be found in the next section.

At this point, I would like to expand on the meaning of two terms used throughout

this analysis. The first is "clutter echo" or "clutter" used in reference to coherent echo

returns which contaminate some of the low altitude Millstone observations. The second

is "tidal structure" or "tidal feature" used in reference to density perturbations in the

observed diurnal variation of NmF2 and HmF2, primarily at Arecibo.

Clutter echoes are powerful coherent return-signals which appear in the radar

sidelobes. These echoes occur mainly when the radar is operating at low altitudes, low-

I elevation angles, and when azimuths are north of Millstone; in addition, they are more

common during relatively high geomagnetic activity. While clutter is prevalent for the

above conditions, it is not limited to them. For example, clutter is also observed

I (although less frequently) for all elevation angles, azimuths, and levels of geomagnetic

activity. These echoes physically arise from high-amplitude wave-induced plasma

instabilities and are only observed when the radar-wave is nearly perpendicular to theI
I
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earths magnetic field. The reason this feature does not appear at Arecibo is because of

a lack of instabilities large enough to contaminate the sidelobes there. At Sondrestrom,

I where the geomagnetic dip angle is 80', radar-wave/magnetic-field perpendicularity is not

possible, therefore clutter echoes are not seen there. For a detailed explanation and

analysis of Millstone clutter see St-Maurice et al. [1989].

I Tides are perturbations on the diurnal thermospheric wind pattern. They are driven

primarily by solar heating through differential absorption of solar EUV by the neutral

constituents of the thermosphere, solar UV by ozone in the mesosphere, and solar-visible

I and -infrared radiation by water vapor in the troposphere. This differential heating effect

sets up tides which exhibit diurnal, semidiurnal, and possible higher order modes. In

addition, the various tidal modes are highly latitude dependent. It is the semidiurnal

mode and some lesser composite modes that are prevalent at Arecibo [Crary and Forbes,

19861. Tides are not as important at Millstone and Sondrestrom because of this latitude

dependence [e.g., Salah, 1974; Fesen et al., 1986; and Forbes, 19871.

Plates are formatted as follows. First, the bottom (horizontal) axis represents

universal time (UT) with a conversion to local time (LT) normally shown on the top

horizontal axis. Second, the vertical axis represents altitude from 100 - 500 km. Third,

black areas in the plates represent either density values off the scale of the plot, times

I when the radar was not operating, or data from lower altitudes which was not supplied.

Fourth, clutter echoes for low altitudes at Millstone were not subtracted from the

observations. Discussion of the plates follows.I
I
I
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4.1 Plate 1, Comparison of 17-19 Jan 1984

In general, the model-produced density-patterns agree with observed values. The

agreement is better at Sondrestrom and Millstone than at Arecibo. In addition, tidal

structure is evident in the Arecibo observations and is not reproduced by the model.

4.1.1 Sondrestrom Comparison

a. NmF2 pattern is very similar.

b. Daytime HmF2 values produced by the model are about 25 km higher than

observed by the radar.

I c. The diurnal phase is reproduced almost exactly by the model. However,

there is an asymmetrical structure around daytime-maximum values that is

not in the observations. This feature was found to be due entirely to the

I input (By) component.

I 4.1.2 Millstone Comparison

a. The NmF2 and HmF2 pattern is very similar.

b. The diurnal phase is extremely close with the exception of a secondary

evening peak found in the observations on the second day and centered on

* 22 UT.

4.1.3 Arecibo Comparison

a. Maximum daytime NmF2 values are 3-4 times higher in the observations

than fOund1(l in the miodel. The nighttime peak val ues are similar.I
I
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b. The height of daytime peak-density values is about 25 km higher in the

model. Early in the night HmF2 is nearly the same, but by 8 UT it is about

50 km higher in the model.

c. The diurnal phase of daytime features is very good. However, the nighttime

pattern is not well produced.I
4.2 Plate 2, Model Sensitivity to Kp - An Alternate

Model Comparison of 17-19 Jan 1984

This plate was made to show the model sensitivity to the geomagnetic input (Kp), it

is identical to the previous plate except that the model input here is Kp = 1. The actual

conditions for this day made it difficult to classify this input parameter (see appropriate

I values in Table 4). It is apparent when comparing this plate with the previous plate that

Kp has little effect on Millstone and Arecibo, but greatly effects Sondrestrom.

4.2.1 Sondrestrom Comparison

a. The NmF2 and HmF2 variations look very similar.

I b. The diurnal phase is again reproduced almost exactly, but this time without

the asymmetry noted in Plate 1. This demonstrates the model sensitivity to

Kp at high latitudes-- not only does this asymmetry depend on input Kp but

it also depends heavily on the chosen (By) component.

4,2.2 Millstone Comparison

3 a. The entire pattern has not really changed from the previous case.

I
I
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4.2.3 Arecibo Comparison

a. Again the entire pattern is similar to the previous plate.I
4.3 Plate 3, Model Sensitivity to F10.7

- Comparison of 26-28 Jun 1984

The main purpose of this plate is to show the sensitivity of the model to the solar-flux

input (FIO.7); and to demonstrate the importance of using multiple radars to constrain

model inputs used in the comparisons. Observed values of the solar flux (Sa) for this

"World Day" case make it difficult to classify this input for the model (see appropriate

* values in Table 4).

The model runs at Millstone and at Arecibo (Arecibo is not shown) seem to constrain

I FI0.7 = 130. This however produces high daytime HmF2 at Sondrestrom. This could

3 be due to a high-latitude difference in neutral winds from those input to the model. A

model run with F10.7 = 100 would be useful in any further analysis of this case.I
4.3.1 Sondrestrom Comparison

I a. The daytime- and nighttime-maximum values of NmF2 are very similar for

the case of F10.7 = 130.

b. When F10.7 = 70, the NmF2 are a little low but not significantly so.

c. Nighttime values of HmF2 are similar for both cases of F10.7.

d. Daytime-observed and -modelled values of HmF2 are similar when F10.7

was set to 70. However, for F10.7 = 130 these model HmF2 levels are

approximately 75 km higher than the observed values.I
I
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e. The diurnal-phase variation was very close in both cases except that the

model does not reconstruct the rapid nighttime disappearance of the F2-layer.U
4.3.2 Millstone Comparison

I a. Daytime- and nighttime-maximum values of NmF2 are remarkably close for

the F1O.7 = 130 case. When F1O.7 is set to 70, the model-produced

maximum-NmF2 is about 1/4 of the observed value.

b. When F10.7 = 130, both daytime- and nighttime-HmF2 values are

remarkably similar. When F10.7 is set to 70, the model produces HmF2

levels about 25 km lower than observed.

c. The model-produced diurnal-phase for both cases of F10.7 is similar to that

3 in the radar observations. However, both model-runs fail to pick up a late-

afternoon secondary-peak observed by the radar.

4.4 Plate 4, Comparison of 19-21 Sep 1984

There appears to be mixed results for this fall equinox "World Day" case. While

agreement is remarkable at Millstone, Sondrestrom and Arecibo are not as good. At

I Sondrestrom, the effect of running a spring-equinox day for a fall-equinox comparison is

probably the main cause for the marginal reproduction of radar observations. In addition,

auroral structure has not been reproduced by the model. Discrepancies found at Arecibo

are similar to those found there in other seasons.

I
I
I
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U 4.4.1 Sondrestrom Comparison

a. Daytime-maximum NmF2 is slightly higher in the model than for the

I observations (model values are less than 1/2 as large). Nighttime values of

3 NmF2 are similar.

b. Heights associated with maximum-daytime and -nighttime NmF2 are similar

I except for an apparent lowering of the layer (around 18 UT) in the

observations which is not reproduced by the model.

c. The overall appearance of the comparison is marginal. The daytime model

peaks are created in the right time intervals, but the distribution of densities

away from HmF2 is not the same, and aurorally produced structure in the

* observations is missing in the model.

4.4.2 Millstone Comparison

a. The overall reproduction of NmF2 is remarkable, the only exception is a

I trough apparent during the second night of radar observations that is not

I reproduced by the model.

b. HmF2 variations are very well reproduced.

U c. The diurnal phase and overall pattern look extremely good with the exception

I of a secondary evening peak in the observations.

I 4.4.3 Arecibo Comparison

a. Observed-daytime peak-density values are 3-4 times larger than in the model

while nighttime-NmF2 vales are closely reprodluced.

I
I
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b. The daytinme-IlmF2 pattern matches observations. The nighttime pattern is

reasonable except for the faiIlurn of the model to reproduce tile rapid fall of

U [2-layer in the early morning hours.

c. The timing of most features is closely reproduced except for that mentioned

in (h).I
4.5 Plate 5, 15-18 Jan 1985I

In general, the model reproduction for this experiment is very good, especially at

Sondrestrom and at Millstone. The biggest discrepancies icilde tlhe tailure of the model

to reproduce auroral structure at Sondrestrom and daytime NmF2 at Arecibo.

4. 1 Sonedrestrom Comparison

a. Model reproduced NmF2 and ltmF2 are very close.

b. Timing of the density pattern is reproduced almost exactly.

c. Auroral structure is evident in the radar observations which is not reproduced

by tile m(olel.

-. 5.2 Millstone (omparison

a. Nini2 and I ImF2 values are very close. I lowever, during the first day of the

experimcnt, the radar-observed daytime peak-densities are twice as high as

those iin the model. These higher densities for that day arc also observed at

Arcciho although not at Sondrestrom. Solar and geoniagnetic i ilicators dto

not refltct a reason fbr this higher activity on that day (sce Table -1).
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b. Model reproduction of the diurnal phase is very good, but it again fails to

pick up a secondary evening peak found in the observations.

I c. Low-altitude clutter is evident in these Millstone observations.

I 4.5.3 Arecibo Comparison

a. Maximum daytime densities are 3-4 times higher in the observations than in

the model. The highest densities are found during the first day.

I b. Nighttime NmF2 values are similar except during the second night of the

experiment where observed densities are twice as high as in the model.

c. Daytime HmF2's are close while nighttime values vary because observed

densities exhibit tidal structure not produced by the model.

d. The timing of the diurnal pattern looks good except that the model does not

reproduce the rapid early-morning fall of the F2-layer.

4.6 Plate 6, 19-22 Mar 1985

Overall reproduction of observations for this day is very good. The only significant

exception is the failure of the model to reproduce correct daytime NmF2 values at

I Arecibo. In addition, there is structure at all three radars which is not reproduced by the

model.

4.. I Sondrestrorn Comparison

ia. Daytime- and nighttime-NmF2 values are almost exactly reproduced.

I
I
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b. While nighttime HmF2's are close, even though hard to discern, daytime

modelled HmF2's are approximately 25 km too high.

c. Diurnal timing looks good, however the model fails to reproduce a second-

daytime maximum found on the 21st.

d. Daytime and nighttime structure is very visible in the observations and is not

I reproduced by the model.

I 4.6.2 Millstone Comparison

a. Daytime NmF2's are slightly higher in the observations (less than twice as

high). Nighttime NmF2's are about the same.

I b. Daytime HmF2's are about 25 km too high in the model.

c. The diurnal pattern looks similar with the exception of a very minor

secondary evening peak found in the observations.

d. The overall structure of the observations is more complex and clutter is

evident at low altitudes.

4.6.3 Arecibo Comparison

a. Daytime NmF2's are up to 3 times higher in the observations than in the

model. Nighttime-modelled values are similar to those in the observations.

I b. The variation of HmF2 with time shows a greater amplitude in the

observations than in the model. Daytime-observed HmF2's start out lower

than the model and then climb to nearly equivalent ranges by the end of the

I day. The observed nighttime-collapse of the F2-layer is much more dramatic

I
I
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3 than in the model.

c. There is considerable structure noted in the observations which is not

I reproduced by the model.

I 4.7 Plate 7, 14-17 Jan 1986

U The overall model reproduction of observations was remarkably good for this case.

However, the observations at all three radars are highly structured, particularly at night,

and this is not reproduced by the model.

4.7.1 Sondrestrom Comparison

a. In general, the NmF2 comparison is very good for both day and night

U conditions.

3 b. Daytime-modelled HmF2 values are about 25 km too high. Nighttime-

observed HmF2's are hard to locate because of the structure in the

I observations.

c. The diurnal timing of the model is very good.

4.7.2 Millstone Comparison

a. Daytime NmF2's are closely reproduced while nighttime model values are

slightly lower (about a factor of 1/2).

b. Daytime and nighttime HmF2's appear to be about 25 km too high in the

model. Nighttime HmF2's are hard to locate in the observations because of

stncture.

I
I
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c. Timing of the diurnal pattern is closely reproduced by the model. The

secondary evening peaks noted for many of the other "World Day" cases are

I not as evident here.

d. The observational pattern is highly structured and clutter is evident at low

altitudes. In addition, high- and low-altitude nighttime-densities are 2-3 times

I lower in the model than in the observations.

1 4.7.3 Arecibo Comparison

a. In contrast to many of the other cases, daytime-NmF2 values are very

similar. Nighttime values are also similar except where tidal structure is

evident.

3 b. HmF2 locations are close during the day but are hard to compare at night

because of structure in the observations.

c. The timing of the diurnal pattern is very closely reproduced by the model.

d. A significant amount of tidal structure is evident in the observations both at

night and during the day. This is not reproduced by the model.

4.8 Plate 8, 23-26 Sep 1986

This fall equinox "World Day" comparison shows mixed results. The overall model-

prxuced densities are very similar to Millston, observations, while Arecibo's daytime-

I NmF2 values are higher than in the model. The model reproduction of Sondrestrom

I densities is poor. This may be due to running a spring-equinox model-day to reproduce

I
I
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a fall-equinox pattern. In addition, Sondrestrom observations show significant structure

due to auroral precipitation which is not reproduced by the model.I
4.8.1 Sondrestrom Comparison

I a. Model-produced daytime NmF2's are slightly higher than observed (less than

twice as high). The nighttime NmF2's are generally similar.

b. The daytime HmF2 values are about 50 km higher in the model. Nighttime

I HmF2's are hard to compare because of structure in the observations.

c. Nighttime densities at low and high altitudes are significantly lower in the

observations than in the model.

d. Diurnal phase shows much more structure in the observations than in the

model. The overall pattern of the observed plot does not look like the model

pattern.

4.8.2 Millstone Comparison

a. NmF2's appear similar for both night and day conditions.

I b. HmF2's appear similar except for a secondary evening peak in the

observations as well as an area of lower nighttime-observed densities at

around 5 LT on the 24th.

I c. The diumal timing looks good.

d. There is significant clutter in the observations, particularly during the day on

the 24th, where clutter effects are apparent as high as 300 km.

I
I
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4.8.3 Arecibo Comparison

a. Peak-daytime NmF2's are 2-4 times higher in the observations while

I nighttime values are similar.

b. HmF2 variation is similar except that the model does not reproduce the rapid

fall of the F2-layer in the early morning.

I c. Diurnal timing is similar.

d, Observations are highly structured and this is not reproduced in the model.

4.9 Plate 9, 1-5 Jun 1987

Model simulation for this summer "World Day" case is good at Sondrestrom but

marginal at both Millstone and Arecibo. All three radars exhibit considerable structure

throughout the period. Note that solar and geomagnetic observations for these days are

not indicative of this observed structure (see Table 4).

I 4.9.1 Sondrestrom Comparison

a. Modelled- and observed-NmF2 values are similar for both daytime and

nighttime conditions.

I b. HmF2 values are generally similar but the observations show considerably

more structure in its variation with time.

c. Timing is good for the major density features.

4.9.2 Millstone Comparison

a. li)aytimem-naximIuIm NmF2 values are 2-3 times higher in the model while

I
I
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nighttime values are similar.

b. HmF2's for maximum-daytime NmF2 values are about 75 km higher in the

observations than in the mocel. Nighttime levels are similar. There is

considerable structure in the variation of HmF2 with time which is not

reproduced by the model.

c. For this case, the secondary peak noted in other Millstone "World Days"

seems to be amplified. The peak values occur between 17-21 LT.

d. Clutter is apparent throughout the low altitudes of the observations.

I 4.9.3 Arecibo Comparison

a. Peak radar densities are off the plotted scale. There are very high NmF2's

on 1 June, where peak values of LOG 6.6 (3.98 X 106) cm3 occur in the

U observations. The remaining days have peak values of LOG 6.1 (1.26 X 106)

cm3 . An NmF2 of Log 6.6 cm3 is 16 times higher than the highest NmF2

produced by the model (LOG 5.4 or 2.51 X 10' cm 3 ). However, the peak

U observed densities for 2-5 June are only 4-5 times higher than those produced

by the model.

b. Model-daytime HmF2 values are approximately 50 km too low. Nighttime

values are similar except for the rapid fall of the F2-layer in the early-

morning hours.

c. Timing for the onset of daytime production is correctly modelled. However,

nighttime decay of NmF2 occurs too early in the model.

I d. Observations show some nighttime tidal activity which is not reproduced by

I
I
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tile model.

4.10 Plate 10, 12-16 Jai j.988

The solar and geomagnetic conditions for this case are relatively active and

changeable, see Table 4. The overall model reproduction for all three radars (at least on

some of the days) is gool with a slight over-production of densities at Sondrestrom and

NI,.,,stone; and good agreement at Arecibo. There is a significant amount of structure at

Sondrestrom and Arecibo which is not reproduced by the model.

4.10.1 Sondrestrom Comparison

a. During the first two days, tile peak-observed NmF2's are similar. The last

3 days show a slight overestimate of NmF2 by the model (about 2 times

I higher).

b. l)aytime- and nighttime-HmF2 values are similar for the first two days.

I After that, it is difficult even to discern a diurnal pattern in the observations.

c. For the first 2 days-- timing of the diurnal pattern is good, the model even

picks tip the asymmetry in the observations.

I
41.10.2 Millstone Comparison

Ia. Both maximum-daytime and -nighttime NmF2 values are reproluced by the

1b. 'lel daytilile and nightt i fie-n I'xlel I I lnF2's appear to be about 25 kill

too high.

I
I
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c. The diurnal pattern seems to be timed correctly.

d. There are very high evening densities in the observations on 14 January, with

I very high NmF2 and HmF2 values.

d. Clutter is not as apparent in this case as it was in others.

4.10.3 Arecibo Comparison

a. Observed- and modelled-NmF2 values are in close agreement except for

evening values on 14 January, which in the observations are as high as

LOG 6.5 (3.16 X 106) cm 3.

b. Generally, the modelled-HmF2 pattern is similar to the observations.

However, there is a great deal of diurnal structure in the observed HmF2's

which is not reproduced by the model.

c. The timing of the diurnal pattern is very good.

d. There are very high NmF2 and HmF2 values in the evening and early

I morning of 14-15 January-- like that observed at Millstone.

e. There is a great deal of tidal structure in the observations that is not

reproduced by the model.I
4.11 Plates 11-12, Comparison of3 Spring and Fall Equinox

These two plates demonstrate the effect of using a spring-equinox day as a seasonal-

input parameter to reproduce both spring- and fall-equinox conditions. In general, the

i
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agreement between radar and observations is very good for spring-equinox and is not for

fall-equinox conditions. Sondrestrom was chosen for this comparison because the

m seasonal variations are larger there.

I 4.12 Plate 13, Secondary Evening Peak at Millstone

This plate emphasizes the secondary evening peak observed at Millstone which is not

reproduced by the model. This condition is observed in the majority of cases studied and

is most evident for summer and equinox conditions.

4.13 Plates 14-16, High-Latitude Winter and Summer
Cases with Geomagnetic Activity

U Plates 14 and 15 show a case in which radar observations indicated considerable

geomagnetic activity, particularly on the last 3 days. Since observed-solar and

-geomagnetic parameters were variable during this period, I varied those inputs in the

model. These two plates contrast medium and high values of Kp to see if the observed

Kp parameter is a good indicator of what is observed. It appears that a "best fit" occurs

when the observed-solar and -geomagnetic parameters are most closely fit.

Plate 16 is a summer case with geomagnetic activity, especially on 28 June. If one

contrasts this plate with plate 3, one again finds that even for an active day-- fitting the

model with the observed-solar and -geomagnetic parameters will best reproduce the

observations.I
I
I
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Plate 14. 1-ugh-latitude winter case with geomagnetic activity #1
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Plate 15. High-latitude winter case with geomagnetic activity #2I
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4.14 Plate 17, Solar-Cycle Variation

The period of this study covers 3 1/2 years approximately centered about the last

solar-cycle minimum in 1986. Therefore the observed solar flux represents about 1/4 of

the full solar-cycle. This plate shows the effects of a varying observed average solar flux

(Sa) for the comparison period (note that Sa and F1O.7 are almost equivalent solar flux

parameters and can be used interchangeably as discussed in section 3.3.2). The average

flux values vre shown on the right-hand-side of the plate, these values ranged from near

I 100 at the beginning of the period, to near 70 toward at solar minimum (in 1986), and

back up to near 120 towards the end of the period of study. Kp values for the 1984 and

1985 periods are relatively low; Kp for the 1988 period was relatively high and variab'e.

U See Table 4 for observed Sa and Kp values. The 1984 - 1985 comparison shows very

little difference in HmF2 and only slightly higher NmF2 for the 1984 case. The 1985 -

1988 comparison clearly shows higher HmF2 and NmF2 for the 1988 case. The

I increased solar-flux in 1988 is likely to be the primary cause of these higher values since

they are observed even at the lower latitudes were geomagnetic effects are not usually

seen.

4.15 Plate 18, Seasonal Variation

This plate demonstrates the seasonal var.ation observed at the radars and their model

equivalents. The model reproduces most of the summer-winter differences including (for

I summer conditions): longer daytime production, generally higher HmF2's, and for

I
I
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Sondrestrom and Arecibo less degradation of the nighttime F2-layer. Notice the summer

period shows similar characteristics to that found for the summer period of Plate 9-- good

model-reproduction at high latitudes but marginal model-reproduction of mid and low

latitudes. Spring-fall equinox comparisons are very similar at Arecibo, show higher

spring-equinox daytime-NmF2 at Millstone, and show significant differences (discussed

I in section 4.11) at Sondrestrom. These days were selected because they all were near

solar-minimum conditions (with low Sa flux) and had relatively low Kp conditions. Kp

for both the January and March cases were very low, while values for June and

I September were slightly higher. See Table 4 for observed-solar and -geomagnetic

* conditions.

4.16 Plate 19, Daytime NmF2 Differences at Arecibo

This plate shows quite dramatically the daytime NmF2 differences between observed

and modelled conditions. Two cases show relatively good agreement, 17-19 January 1984

and 12-16 January 1988. In general though, observed-daytime NmF2's were 2-4 times

higher than in the model; for the worse case (1 June 1987), the observed densities were

16 times higher than in the model.

I
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* CHAPTER V

I DISCUSSION AND CONCLUSIONS

I 5.1 Summary of Major Trends Found

There are five major trends clearly evident from the data analysis. They are

1. On average, there is very good agreement between observed and model

densities.

2. The model does not reproduce a secondary evening peak at Millstone.

3. Fall-equinox observations at Sondrestrom are not well reproduced using a

spring-equinox model-day.

4. Tidal effects at Arecibo are not reproduced by the model.

I 5. Peak-daytime NmF2's at Arecibo do not agree.

These findings are significant because this study includes over 50 individual days;

encompasses different seasons, Sa, and Kp over 3 1/2 years; and uses three radars in very

I different geomagnetic regions.

3 In order to be objective about the comparison, I grouped ionospheric features into

those of primary and secondary importance when analyzing the data. This allowed me

to separate major similarities and differences from those of less importance. The primary

features compared were peak density found in an altitude profile (NmF2), the height of

that peak density (HmF2), and the time variation of NmF2 and HmF2. In addition, color

plates allowed me to easily distinguish secondary features such as structure, perturbations

I
I
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in the time variation of NmF2 and HmF2, asymmetries in the daytime peaks, density

differences at the top and bottom of the layer, and so on. A discussion of the major

I trends follows.

I 5.1.1 Overall Agreement Between
the Model and Observations

The most striking trend found, is the overall agreement between the model and the

observations. Most of the primary ionospheric features were reproduced in the model for

the majority of cases. In addition, a number of secondary features were reproduced. The

best comparisons are those in which model inputs are best defined. For instance,

comparisons at high latitude are generally better when there is little variability in the

observed geomagnetic indicator (Kp). As another example, one of the best overall

comparisons found in this study was for the 14-17 January 1986 case, where observed-

I solar and -geomagnetic parameters were constant through the period (see Table 4);

additionally, these parameters were very close to the actual model inputs used.

Geophysical inputs such as the neutral atmosphere, convection pattern, and particle

I precipitation are statistical averages. Because these geophysical inputs were held constant

for the model calculations, the TDIM cannot be expected to closely reproduce

observations during periods when there is a high degree of variability in the geophysical

I conditions.

The USU-TDIM showed a great deal of sensitivity to geomagnetic (Kp) and

especially to IMF (By > 0, By < 0) inputs at Sondrestrom, while these inputs had little

or no effect at Millstone and Arecibo. These sensitivities were reflected in the nlixcl-

I
I
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radar comparisons to a remarkable extent. Plates 14-16 show quite clearly the differences

in the modelled IMF for cases of By < 0 and By > 0. This type of IMF effect at high

I latitudes has been well observed for the convection pattern [e.g., de la Beaujardiere et al.,

1985a] and modelled in densities [Sojka et al., 1983; Rasmussen et al., 1986].

5.1.2 Secondary Evening Peak at Millstone

Another trend is the secondary evening peak in the Millstone observations that

occurred in-some-degree during nearly every experiment, and was not reproduced by the

model. This feature seems to be strongest during summer and weakest during winter,

with equinox lying in-between. The onset time is usually near 20 UT [15 LT] and the

phenomena spans 6-8 hours of local time in the summer, 4-7 hours during spring and fall

I equinox, and 2-4 hours in winter (when it occurs).

The secondary evening peak is not a new observation. Evans [1965] describes the

evening peak being caused at least in part by a rapid redistribution of ionization above

I HmF2 caused by a rapid fall in Te near sunset. However, this does not explain why the

effect sometimes lasts 4-6 hours after sunset. Evans [1973] describes an early Millstone

incoherent-scatter experiment which extended over several seasons during 1966-1967 and

Ucovered solar and geomagnetic conditions similar to those in this study. The observed

* evening Millstone densities exhibited almost identical behavior as that found for the

period of this comparison, thus providing an independent confirmation of the feature.

Evans explains that the evening peak is more pronounced due to a mid-day suppression

of ionization at Millstone caused by a northward mid-day neutral-wind forcing of the F2-

layer into lower regions of the ionosphere where high-recombination rates are present, I

I
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should point out that he was making this hypothesis without being able to measure the

neutral wind, as we can now. He also attributes the summertime predominance of this

I feature to be due in part to a neutral-composition change which enhances loss rates during

3 the day.

The fact that the model does not reproduce densities observed in the regularly

occurring secondary peak serves to highlight this anomaly and indicates a weakness in

3 one or more of the model inputs. An examination of those inputs most likely to explain

this model-radar difference follows, (the most probable causes are listed first). One

possibility is that provided by Evans' explanation of the feature, and that is a difference

between model-input and observed T, near sunset. A second possibility is a difference

between modelled and actual neutral winds for Millstone latitudes. A mid-day northerly-

wind as suggested by Evans is not really suspect because the model reproduced those

n densities, however, a rapid relative-change of neutral winds in a period ranging from 20-

04 UT [15-23 LT] would help explain the feature. It should be noted that a preliminary

investigation of Millstone radar-derived winds does not support this hypothesis; these

m winds were obtained from V. B. Wickwar, personal communication, 1990, for a period

coincident with this study. A third possibility is that there is a daytime-evening neutral-

composition change that is not input through MSIS-86. A fourth possibility is a topside

U flux, possibly due to interhemispheric flow that would enhance evening densities at

n Millstone-- the model !oes not allow for these fluxes because of an assumption that they

are negligibly small. A fifth possibility is a subauroral enhancement of the eastward

convection-electric-field that would produce a vertical component to an E X B drift,

I
U
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I therefore raising HmF2. A sixth possibility is transport of dayside densities across the

polar cap by E X B convection (a tongue of ionization) that is more latitudinally

I extensive than that produced by the model. High densities associated with this

phenomena have been observed for example at EISCAT [de la Beaujardiere et al.,

1985b]. However, there are factors repudiating this hypothesis. For instance, the feature

did not show an interrelation to geomagnetic activity, even though one would expect this

for an E X B drift where the E-field should be highly responsive to geomagnetic activity.

Additionally, while the secondary peak does show a predominance for summer, it was

also consistently observed at equinox, and to a lesser extent during winter. It is not likely

that convection boundaries would be consistently located close enough to Millstone

latitudes to cause a "tongue of ionization" for the number of cases that I observed,

especially for winter and equinox conditions. Summarizing, a satisfactory explanation

pinpointing a specific model-input weakness cannot immediately be provided. The

answer is probably a complex combination of these features and others, which occur at

Millstone between 20-04 UT [15-23 LT]. Clearly, more research needs to be done to

I clarify the reason for this observation-model difference.

I 5.1.3 Spring-Fall Equinox Differences

The third major trend that I identified is the inability of the model to reproduce fall

equinox observations at Sondrestrom when using a spring-equinox model-day input.

Whereas the spring-equinox model gives satisfactory results at Millstone and Arecibo for

both equinoxes. The solution to this problem might appear to be quite simple-- run tile

model for fall equinox. But what would be different? For instance, the neutral wind

I
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input to the model is identical at spring and fall equinox. In addition, solar-EUV inputs

are independent of seasonal changes and do not account for this trend. Finally, neutral

I densities from MSIS-86 are almost identical in these two seasons. One thing is certain,

an observational pattern was established in this comparison that differentiated spring and

fall conditions at Sondrestrom. The reason for these differences should be examined in

1 the future.

U 5.1.4 Tidal Structure at Arecibo

Another trend found in this study is the importance of tides on the electron density

structure at Arecibo. Tidal structure is not included in the Arecibo model runs. Tides

are coupled to the ionosphere through the neutral wind pattern: they typically exhibit

diurnal, semidiurnal, and perhaps higher order periods. At Arecibo, the semidiurnal

component is by far the most predominant mode, it contributes to the so called "midnight

collapse" INelson and Cogger, 1971; Herrero and Meriwether, 1980] and provides for the

I structure observed in many of the "World Days" used in this study. The tidal modes have

been examined by Crary and Forbes [19861. This structure was not seen at Millstone for

example because of the decrease of the semidiurnal mode in the F-region at that latitude

I le.g., Salah, 1974; Fesen et al., 1986; and Forbes 1987]. These features are not included

in the TDIM adopted neutral wind. In fact, there are no daytime input neutral winds at

Arecibo and only a small equatorward wind at night. Clearly, a more sophisticated

U thermospheric wind input is needed before such features can be reproduced.

I
I
I
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5.1-5 Daytime NmF2 Differences at Arecibo

The final trend found is the disagreement between modelled and observed daytime

I NmF2 values at Arecibo. Generally, observed values were 2-4 times higher than in the

5 model, see section 4.16. The reason for this trend is not at all clear. The most

questionable model inputs and assumptions most likely to cause a change in daytime

NmF2 would actually decrease those values if the inputs were improved upon. For

3 instance, adding a daytime northward-neutral-wind component to the model would force

the F2-layer down into regions of higher recombination and decrease NmF2. Allowing

for a diffusive outflow through the top-side ionosphere would also decrease NmF2.

Neutral densities as input thro ih MSIS-86 are not likely to be in error to such an extent

as to cause 2-4 times differences in electron densities every day. In fact, several studies

suggest that the MSIS neutral densities are very good [Cogger et al., 1980; Burnside and

I Sulzer, 19881.

3 A preliminary ionosonde-radar comparison was made in conjunction with this study

for one Arecibo "World Day" from 26-28 June 1984. That comparison verified the radar

I observations for that period.

I A comparison of the USU-TDIM with Arecibo incoherent-scatter data has not been

done in the past, thus this is a new result. However, Sica et al. 11990] performed an

I extensive TDIM-ionosonde NmF2-comparison involving the model and simultaneous mid-

I latitude ionosonde measurements acquired between September 21 and October 5, 1986,

thus overlapping with the radar data acquired between September 23 and 26, 1986, shown

in this study. The ionosonde data were separated into nearby locations with similar

I
I
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U diurnal variations of NmF2 and then grouped together by geographic latitude and

longitude. Two of these groupings were for northern-hemisphere sites with average

I geomagnetic latitudes similar to Arecibo; the model comparisons showed good agreement

3 of NmF2. This is in contrast to the factor 2-4 difference found for the radar-model

comparison at Arecibo in this time interval. However, while the ionosonde stations used

were similar to Arecibo in geomagnetic latitude, they were not at all longitudinally

I similar, and their geographic latitudes were about 20" higher than Arecibo's, these

differences may be significant. Another TDIM-ionosonde comparison [Sojka et al., 19881

was described in section 2.3. The sites involved were closer to the Arecibo longitude.

Although this study again showed good agreement between model derived and ionosonde

measured foF2, it was even more dissimilar to the current study geographically, as the

ionosonde location was at 65.3"S, 64.3W.

The TDIM-radar electron density difference found in this comparison is both large

I and mysterious. Before investing much effort into trying to find an explanation, it would

be a good idea to compare systematically the radar densities to simultaneous co-located

I ionosonde observations, and to verify the Arecibo model runs. If the difference persists,

I it is so large that its explanation may well provide new insight.

5.1.6 Other Possible Trends

Other features were observed in the comparison which occurred on certain days or

seasons but could not really be established as a trend. For example, the June 1984

3 "World Day" exhibited high modelled HmF2 compared to the observations, as discussed

in section 4.3.; however, this feature did not occur in other June periods at Sondrestrom

U
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and therefore is not identified as a trend.

3 5.2 Conclusions

The most striking trend found in this comparison is that the model reproduced the

observed densities to a level which seems to be limited only by its inputs. That is, where

trend differences existed they can most likely be traced to limitations of model inputs.

3 The only possible exception to this is the model-observed differences at Arecibo for

daytime NmF2. These differences need to be verified as real before a physical reason for

them is examined.

I
5.3 Recommendations for Future StudyI

The objective of this study- was to identify the trends in an observation-model

I comparison. Several trends were listed at the beginning of this chapter and have been

3 discussed. In addition, several new questions have been raised that lead to

recommendations for future research.

I First, daily model-input sensitivities during the 20-04 UT [15-23 LT] period at

3 Millstone should be investigated. For instance, a comparison of modelled-input Te and

observed T, near sunset would determine if this contributes to the lack of a secondary

peak. Another possibility is a comparison of the model input neutral winds with

3 Millstone radar derived (or Fabry-Perot measured) winds to determine this input's

contribution. In addition, a comparison of MSIS-86 neutral density inputs, with (for

instance) Millstone radar derived neutrals, would help to determine the role this input hasI
I
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in the lack of the feature in the model. After the model inputs responsible for this trend

have been identified it may be possible to adjust them so that the TDIM can reproduce

n this feature.

Second, running the model for the fall-equinox days used in this study would be

useful in verifying that a fall-spring input distinction is important.

Third, plotting Arecibo ionosonde data for the period of this study and possibly re-

checking and re-running the USU-TDIM would be useful to verify that the Arecibo NmF2

trend is real. If it is, what is the physical reason? This could be a complex problem.

Fourth, much of the observational radar data for this study had not been previously

plotted. Many interesting periods were uncovered. For instance, a detailed analysis of

14 January 1988 at Millstone and Arecibo may give insight into the response of the

ionosphere at lower latitudes due to a magnetic storm. As another example, a model run

I for 26-28 June 1984 using more closely matched F1O.7 and Kp inputs should clarify if

3 the altitude difference was a case of poorly matched inputs or if there is something more

interesting happening-- such as a high latitude difference between modelled- and

I observed-neutral winds. Another interesting period is 1-5 June 1987, where low-

3 geomagnetic and -solar observations make it hard to explain the high densities found at

Millstone and Arecibo; a detailed study of this period would be enlightening. There are

many other examples, and this study could serve a starting point for identifying those

3 periods where a detailed analysis could prove rewarding.

Finally, due to the detail and availability of coordinated "World Day" ISR data, other

long period radar-model comparisons might be useful. For example, extending this

I
I
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3 comparison to the St. Santin and EISCAT radars, which are in a very different longitude

sector, may show new trends and verify those found here. Extending the comparisons to

I the Jicamarca radar and using the fully global TDIM would test the low-latitude abilities

3 of the model. The latitudinal effects found in this study could be emphasized by

calculating and comparing model and radar latitudinal density gradients. Extending the

comparison to the model inputs of convection, particle precipitation, meridional wind,

3 neutral temperature, atomic oxygen, and possibly Te and other observed values, for a

variety of latitudinal and seasonal cases, would be extremely useful in determining the

importance of these inputs. Other types of model calculated parameters, such as Tj and

I possibly Te, could also be used in comparisons, these test other aspects of the physics and

3 further constrain the model.

U
U
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